Dermal bone in early tetrapods: a palaeophysiological hypothesis of adaptation for terrestrial acidosis.
نویسندگان
چکیده
The dermal bone sculpture of early, basal tetrapods of the Permo-Carboniferous is unlike the bone surface of any living vertebrate, and its function has long been obscure. Drawing from physiological studies of extant tetrapods, where dermal bone or other calcified tissues aid in regulating acid-base balance relating to hypercapnia (excess blood carbon dioxide) and/or lactate acidosis, we propose a similar function for these sculptured dermal bones in early tetrapods. Unlike the condition in modern reptiles, which experience hypercapnia when submerged in water, these animals would have experienced hypercapnia on land, owing to likely inefficient means of eliminating carbon dioxide. The different patterns of dermal bone sculpture in these tetrapods largely correlates with levels of terrestriality: sculpture is reduced or lost in stem amniotes that likely had the more efficient lung ventilation mode of costal aspiration, and in small-sized stem amphibians that would have been able to use the skin for gas exchange.
منابع مشابه
The metamorphosis of feeding kinematics in Salamandra salamandra and the evolution of terrestrial feeding behavior
The striking similarity between aquatic feeding behaviors in fishes and tetrapods and terrestrial prey transports in tetrapods and their contrasts to terrestrial tongue projection kinematics have led to a general hypothesis that terrestrial prey capture evolved from terrestrial prey transport, which, in turn, evolved from aquatic feeding behavior. This hypothesis is examined in Salamandra salam...
متن کاملGradual adaptation of bone structure to aquatic lifestyle in extinct sloths from Peru.
Non-pathological densification (osteosclerosis) and swelling (pachyostosis) of bones are the main modifications affecting the skeleton of land vertebrates (tetrapods) that returned to water. However, a precise temporal calibration of the acquisition of such adaptations is still wanting. Here, we assess the timing of such acquisition using the aquatic sloth Thalassocnus, from the Neogene of the ...
متن کاملBetter than fish on land? Hearing across metamorphosis in salamanders.
Early tetrapods faced an auditory challenge from the impedance mismatch between air and tissue in the transition from aquatic to terrestrial lifestyles during the Early Carboniferous (350 Ma). Consequently, tetrapods may have been deaf to airborne sounds for up to 100 Myr until tympanic middle ears evolved during the Triassic. The middle ear morphology of recent urodeles is similar to that of e...
متن کاملOldest Pathology in a Tetrapod Bone Illuminates the Origin of Terrestrial Vertebrates
The origin of terrestrial tetrapods was a key event in vertebrate evolution, yet how and when it occurred remains obscure, due to scarce fossil evidence. Here, we show that the study of palaeopathologies, such as broken and healed bones, can help elucidate poorly understood behavioural transitions such as this. Using high-resolution finite element analysis, we demonstrate that the oldest known ...
متن کاملTetrapod-like axial regionalization in an early ray-finned fish.
Tetrapods possess up to five morphologically distinct vertebral series: cervical, thoracic, lumbar, sacral and caudal. The evolution of axial regionalization has been linked to derived Hox expression patterns during development and the demands of weight-bearing and walking on land. These evolutionary and functional explanations are supported by an absence of similar traits in fishes, living and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 279 1740 شماره
صفحات -
تاریخ انتشار 2012